矩阵理论有什么实际应用?
矩阵可用于求解(n阶)线性方程组的数值解(初等行变换);矩阵可用于求解(n次)代数方程的数值解(QR正交相似变换);一阶微分方程组的系数矩阵A(n×n)可用于求矩阵特征值的数值解 (Jacobⅰ正交相似变换、QR正交相似变换),进而求出一阶微分方程组的函数解。线性方程组、高次代数方程、一阶微分方程组在自然科学有广泛应用。因为抽象的数学方程平衡映射着自然界的动态平衡与静态平衡。
矩阵论有什么用
矩阵论的一个重要用途是解线性方程组。
在其他领域还有诸多应用:
1、物理应用
线性变换及对称线性变换及其所对应的对称,在现代物理学中有着重要的角色。
描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。
2、量子态的线性组合
1925年海森堡提出***个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。
3、简正模式
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。
4、几何光学
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。
扩展资料
一般矩阵论会包括如下内容:
1、线性空间的相关内容,包括线性空间的定义及其性质,线性子空间;
2、内积空间的相关内容,包括欧氏空间 ;
3、 线性变换的相关内容,包括最小多项式理论 ;
4、 范数理论及其应用的相关内容,包括向量范数,矩阵范数以及范数的应用 ;
5、矩阵分析及其应用的相关内容,包括向量和矩阵极限、微分和积分 、方阵级数理论、方阵级数理论的应用等;
6、矩阵分解的相关内容,包括***秩分解和矩阵分解的应用 ;
7、广义逆矩阵及其应用的相关内容,包括基本定义和相关应用;
8、特征值的估计及广义特征值的相关内容,包括特征值的估计及广义特征值和应用。
参考资料来源:百度百科-矩阵论
矩阵理论
与 全部线性组合构成的向量集合称为“张成的空间” (span)
线性无关:对于a和b取所有值都有
基的严格定义:向量空间的一组基是张成该空间的一个线性无关的向量集
线性变换是操纵空间的一种手段,它保持网格线平行且等距分布,并且保持原点不动。这种变换可以用把变换后的基做为列向量所构成的矩阵来表示。
将矩阵相乘看作是对空间进行复合线性变换,即两个变换相继作用 。
秩代表变换后空间的维数
矩阵的列张成的空间就是列空间,秩是列空间的维数
列空间让我们清楚什么时候解存在,零空间有助于我们理解所有可能的解的集合是什么样的
变换后落在原点的向量的集合被称为矩阵的“零空间”或“核”
点积: 投影
点积的投影可以看成一种线性变换
叉积:
基坐标的转换
M代表我所见变换,外侧两个矩阵代表着转移作用,也就是视角上的转换。矩阵乘积仍然代表着同一个变换,只不过是从其他人的角度来看的。
特征值与特征向量
对角矩阵的解读:所有基向量都是特征向量,矩阵的对角元是它们所属的特征值
之所以把矩阵变换为对角矩阵,是因为在该矩阵的特征基上,只进行尺度变换,可以减少运算量。
行列式告诉你的是一个变换对面积的缩放比例,特征向量则是在变换中留在它所张成的空间中的向量。
线性变换:
矩阵是什么 关于什么是矩阵介绍
1、在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
2、矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
矩阵论、 矩阵理论、 矩阵分析三者有何区别?
包含内容不同:
1、矩阵论:
线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积,阿达马积与反积;
几类特殊矩阵,如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等,辛空间与辛矩阵等内容。
2、矩阵理论:
线性空间与线性变换、内积空间与等距变换、特征值与特征向量、λ-矩阵与Jordan标准形、特殊矩阵、矩阵分析初步、矩阵函数的应用、矩阵的分解、非负矩阵、矩阵的广义逆、Kronecker积。
3、矩阵分析:
特征值、特征向量和相似性,酉等价和正规矩阵,标准形,Hermite矩阵和对称矩阵,向量范数和矩阵范数,特征值和估计和扰动,正定矩阵,非负矩阵。
适用范围不同:
1、矩阵论:学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。
2、矩阵理论:适合工科研究生及从事工程的专业技术人员。
3、矩阵分析:可为工程、统计、经济学等专业的研究生和数学专业高年级本科生提供相应知识,也可丰富数学工作者和科技人员的专业素养。
矩阵理论在线性代数的应用
矩阵理论在线性代数的应用【1】
摘 要 线性代数是工科院校必修的一门课程,本文给出了用矩阵理论来求行列式、性方程组、化二次型为标准形等问题的一般方法,对于学习线性代数具有一定的指导性。
关键词 矩阵 行列式 线性方程组 二次型
线性代数是研究线性空间和线性变换的一门学科。
它具有很强的抽象性,而矩阵是由抽象转化为具体的重要桥梁与纽带,并把相关的运算转化为矩阵的简单运算,使线性代数的研究在一定程度上化复杂为简单、变抽象为具体和变散乱为整齐有序。
1 矩阵为行列式的计算提供了新的技巧和方法
我们计算行列式常常用定义法、化为三角形法、递推法、数学归纳法、加边法和降阶法但是在学习了矩阵理论知识后,矩阵为行列式的计算提供了新的技巧和方法.
注:此例的关键是利用分块初等变换把行列式化成容易计算的分块上三角形行列式。
由以上可以看出矩阵对行列式的计算具有一定的指导作用,应用矩阵可以使行列式的计算变的简单和容易操作。
2 矩阵是解线性方程组的***工具
故原方程组的一般解为,其中是自由未知量。
通过引入矩阵秩的概念,解决了线性方程组有解的判定问题;引入矩阵及矩阵的行(列)初等变换概念,使线性方程组与矩阵(增广矩阵)一一对应,将线性方程组的初等变换抽象为矩阵的行初等变换。
线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.从而用矩阵来研究线性方程组使得问题变得简单明了。
3 矩阵是化简二次型的“好帮手”
总之,矩阵理论在线性代数中具有重要的作用,对线性代数的学习有不可忽视的指导作用。
我们从对矩阵理论的认识和矩阵理论与线性代数的联系来论述了矩阵理论的重要作用。
不仅加深了对矩阵理论的认识与掌握,而且得到了用矩阵理论来解决相关问题的重要方法和一般步骤。
矩阵理论不仅在线性代数中有重要的作用,还在图论、统计学和经济等许多科学中有重要作用。
矩阵理论中的许多思想和方法极大地丰富了数学的代数理论。
随着人们对科学研究的深入,矩阵理论的应用愈来愈广,作用越来越突出,矩阵理论自身的发展将会更加完善。
矩阵的其它理论在线性代数中的作用将有待于进一步来研究。
参考文献
[1] 胡金得,王飞燕.线性代数辅导(第三版)[M].北京:清华大学出版社,2003.
[2] 邓勇.矩阵:线性代数的重要工具[J].思茅师范高等专科学校学报,2005(3):55-56.
[3] 朱仁先.关于矩阵若干问题的探讨[J].滁州学院学报,2005(3):111-113.
[4] 北京大学数学系几何与代数教研室高等代数[M].北京:高等教育出版社,2003.
[5] 胡金得,王飞燕.线性代数辅导(第三版)[M].北京:清华大学出版社,2003.
线性代数中矩阵的应用【2】
摘 要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。
下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数 应用 线性 矩阵
线性代数作为数学分支之一,是一门重要的学科。
在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的`这一数表实施变换,以此获得所需结论。
近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用
大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。
基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。
比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。
基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。
通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。
由于量纲分析在运算上所涉及到的内容仅有代数,对此,若进行的试验十分昂贵,一般在实验前,人们倾向于事先在不同的假设下构建若干的相似模型,接着择优选择来进行实验。
从侧面上来讲,这种方法对于部分常数还起到一定的压缩或者恢复的作用。
2 矩阵在生产总值和城乡人口流动分析中的应用
2.1 生产总值
3 结语
综上所述,经线性代数中矩阵在不同领域中应用案例的分析可知,矩阵所具潜能非常的大,伴随着信息技术水平的提高,网络技术的进步,矩阵的应用也会更加深入。
由于各学科间、各行业之间的交叉变得越来越频繁,且界限也变得越来越模糊,在这种形势下,数学这门学科所具基础性也更为明显,对此,在学科研究与行业研究中融入数学,不仅可使研究更加具有说服力,同时还可使研究变得更为简洁,获得更为合理且科学的研究成果。
参考文献
[1] 侯祥林,张宁,徐厚生,等.基于动态设计变量优化方法的代数黎卡提方程算法与应用[J].沈阳建筑大学学报:自然科学版,2010,26(3):609-612.
[2] 黄玉梅,彭涛.线性代数中矩阵的应用典型案例[J].兰州大学学报:自然科学版,2009,45(Z1):123-125.
[3] 殷婷,王杰.多机系统Hamilton实现的Hessian矩阵正定判定与应用[J].电力系统保护与控制,2013(23):16-22.
[4] 朱瑞可,李兴源,赵睿,等.矩阵束算法在同步电机参数辨识中的应用[J].电力系统自动化,2012,36(6):52-55,84.
关于矩阵理论和矩阵理论和线性代数区别的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。