数据治理企业系统梳理
开展数据、信息梳理的步,先对企业中的所有系统进行梳理,了解不同系统下的业务需求、项目模块、业务组等,编制梳理计划。当系统间进行集成或对接时,无非是将系统下的数据进行交互对接、整合,此时常见的问题就是各系统间相同的数据无法保证数据格式的一致性、准确性和完整性。第二步便是要对数据制定统一性规则,确保数据的完整性和一致性。首先要建立公共信息类模型,保障数据梳理时有统一的信息规范。其次,设定特殊信息级模型,制定数据性等级,确定数据信息敏感级别,方便确立日后哪些数据、信息以何种形式进行交互流通。
派客动力分类分级系统
派客动力数据分类分级管理系统是全Web化的数据资产管理系统,采用规范的数据分类、分级方法,有助于用户理清数据资产,分门别类地管理数据,确定数据重要性或敏感度,有针对性地采取适当、合理的管理措施和安全防护措施,形成一套科学、规范的数据资产管理与保护机制,从而在保证数据安全的基础上促进数据的使用以及开放共享。
数据治理数据安全
近年来,关于数据安全问题已然成为世界性的热门话题。对此,各国对网络安全、敏感数据保护、个人隐私保护等出台了一系列的法律、法规和行业政策,并不断的加以完善,有效对其不轨行为进行了法律层面的约束。
同时,随着信息技术时代的不断发展,大量的信息、数据贯穿整个企业多个环节,为保护企业内部数据资产安全,如何解决数据流通时所带来的安全威胁成为重中之重。
数据治理行业现状
目前各行业都在向数字化驱动做转型,中大型企业内部有海量的业务系统,同时系统内承载着海量的敏感数据信息。由于企业不断的拓展多种类新业务,导致新、老数据出现结构复杂、类型多样,难以管理的局面。正因如此,繁多复杂的数据中蕴藏着极具价值的敏感数据,而这样的局面对于敏感数据的保护也就极为艰难。各行业也认知到了这个问题,基本都已规划及实施建设了信息安全体系,能够的保障业务系统的安全,为何数据泄露事件依然频频发生呢?